Environmental Product Declaration

Declaration Code: EPD-ISZ-GB-37.0

Solar shading devices

Internal solar shading Devices

ift

ROSENHEIM

clauss markisen Projekt GmbH

Basis: DIN EN ISO 14025 EN15804

Company EPD Environmental Product Declaration

> Publication date: 15.10.2020 Next revision: 15.10.2025

ift Rosenheim GmbH Theodor-Gietl-Str. 7-9 D-83026 Rosenheim Kontakt Tel.: +49 8031 261-0 Fax: +49 8031 261-290 www.ift-rosenheim.de Prüfung und Kalibrierung – EN ISO/IEC 17025 Inspektion – EN ISO/IEC 17020 Zertifizierung Produkte – EN ISO/IEC 17065 Zertifizierung Managementsysteme – EN ISO/IEC 17021

Notified Body 0757

Environmental Product Declaration

Declaration Code: EPD-ISZ-GB-37.0

Programme operator	ift Rosenheim GmbH Theodor-Gietl-Straße 7-9 D-83026 Rosenheim												
Practitioner of the LCA	ift Rosenheim GmbH Theodor-Gietl-Straße 7-9 D-83026 Rosenheim	Theodor-Gietl-Straße 7-9 D-83026 Rosenheim											
Declaration holder	Sindelfinger Straße 21	lauss markisen Projekt GmbH Sindelfinger Straße 21 70771 Leinfelden-Echterdingen											
Declaration code	EPD-ISZ-GB-37.0	PD-ISZ-GB-37.0											
Designation of de- clared product	Internal solar shading devi	nternal solar shading device											
Scope	Decorative and technical papplication	Decorative and technical privacy screens and solar shading devices for internal application											
Basis	DIN EN 15804:2012+A1:2 lung von Typ III Umweltpro vironmental Product Decla	duktdeklarationen" (Guidan rations) applies. The Decla CR-A-0.2:2018 and "Solar s	N ISO 14025:2011 and meiner Leitfaden zur Erstel- ce on preparing Type III En- ration is based on the PCR hading devices and shutters										
	Publication date: 15.10.2020	Last revision: 15.10.2020	Next revision: 15.10.2025										
Validity		ucts and is valid for a period	tion (company EPD) applies d of 5 years from the date of										
LCA basis	DIN EN ISO 14044. The battion site of clauss markiser "GaBi 9" database. LCA c	ase data includes both the on Projekt GmbH and the ge alculations were carried ou e (cradle to gate with option	DIN EN ISO 14040 and data collected at the produc- eneric data derived from the t for the included "cradle to ons) including all upstream										
Notes		nce on the Use of ift Test D umes full liability for the und	ocuments" apply. erlying data, certificates and										
	-												

F. Stich

T. Mielahr

Florian Stich Deputy Head of Certification and Surveillance Body Dr. Torsten Mielecke Chairman of Expert Committee iff-EPD and PCR

Susanne Volz External Verifier

ift Rosenheim GmbH Theodor-Gietl-Str. 7-9 D-83026 Rosenheim Kontakt Tel.: +49 8031 261-0 Fax: +49 8031 261-290 www.ift-rosenheim.de

Prüfung und Kalibrierung – EN ISO/IEC 17025 Inspektion – EN ISO/IEC 17020 Zertifizierung Produkte – EN ISO/IEC 17065 Zertifizierung Managementsysteme – EN ISO/IEC 17021

Notified Body 0757 PÜZ-Stelle: BAY 18

ift

ROSENHEIM

1 General product information

Product definition

The EPD relates to the product group "Solar shading devices" and applies to:

1 m² of Internal solar shading made by clauss markisen Projekt GmbH.

The functional unit is obtained by summing up:

Assessed product	Reference product	Weight per unit area
Venetian blind	1.23 m x 1.48 m	1.20 kg/m ²
Roller blind	1.23 m x 1.48 m	6.56 kg/m²

The average unit is declared as follows:

Directly used material flows are determined using average sizes (1.23 m x 1.48 m) in accordance with the PCR and assigned to the declared unit. All other inputs and outputs in the production were scaled to the declared unit in their entirety because no direct assignment to sizes is possible. The reference period is the year 2019.

The validity of the EPD is restricted to the following models:

- venetian blind
- vertical blind
- pleated blind
- honeycomb pleat blind
- panel blind
- roller blind

Product description

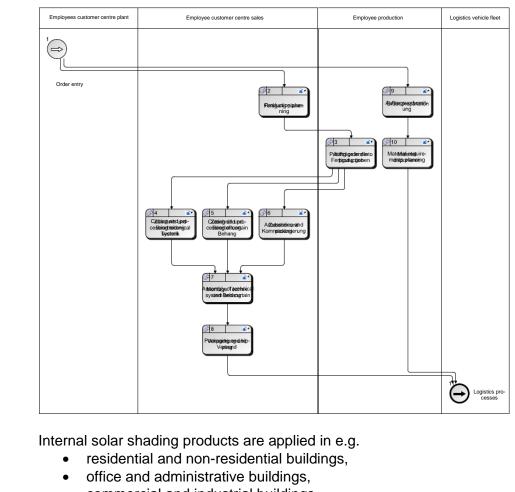
Venetian blind

Decorative and technical privacy screen and solar shading device for internal applications in individual sizes and designs, as system based on horizontal or vertical slats/laths, with or without side guide rails, and with different slat colours.

Roller blind

Decorative and technical privacy screen and solar shading device for internal applications in individual sizes and designs, as rolled, stacked, pleated or panel system, with or without side guide rails, and with different fabrics.

For a detailed product description refer to the manufacturer specifications at <u>www.mhz.de</u> or the product specifications of the respective offer/quotation.



Page 4

Product group: Solar shading devices

Product manufacture

Applications

- commercial and industrial buildings,
- sports and cultural buildings.

Verifications	 The following verifications are held: performance requirements including safety to DIN EN 13120
	For further and updated verifications (incl. other national approvals) refer to www.mhz.de.
Management systems	 The following management systems are in place: quality management system to DIN EN ISO 9001:2015 (Niederstetten)
Additional information	For additional verification of applicability or conformity, if applicable, refer to the CE marking and the documents accompanying the product.
2 Materials used	
Primary materials	The primary materials used are listed in the LCA (see Section 7).

Declarable substances The product contains no substances from the REACH candidate list (declaration dated August 2020).

Product group: Solar shading devices

All relevant safety data sheets are available from clauss markisen Projekt GmbH .

3 Construction process stage

Processing recommenda-
tions, installationObserve the instructions for assembly/installation, operation, ser-
vice/maintenance and disassembly. See www.mhz.de.

4 Use stage

Emissions to the environment No emissions to indoor air, water and soil are known. There may be VOC emissions.

Reference service life (**RSL**) The RSL information was provided by the manufacturer. The RSL refers to the declared technical and functional performance of the product within the building. It shall be established in accordance with specific rules set out in the European product standards and shall also take into account ISO 15686-1, -2, -7 and -8. Where European product standards provide guidance on determining RSL, such guidance shall have priority. If it is not possible to determine the service life as the RSL in accordance with ISO 15686, the BBSR table "Nutzungsdauer von Bauteilen zur Lebenszyklusanalyse nach BNB" (service life of building components for life cycle assessment in accordance with the sustainable construction evaluation system) can be used. For further information and explanations refer to www.nachhaltigesbauen.de.

For this EPD the following applies:

The reference service life (RSL) can be determined for a "cradle to gate with options" EPD only if all of the Modules A1-A3 and B1-B5 are specified; According to the manufacturer, the internal solar shading products manufactured by clauss markisen Projekt GmbH have a service life of 20 years.

The service life is dependent on the characteristics of the product and inuse conditions. The characteristics described in the EPD are applicable, in particular the characteristics listed below:

- Outdoor environment: No weather impacts known that have a negative effect on the service life.
- Indoor environment: Certain impacts (e.g. humidity, temperature use) may have a negative effect on the service life.

The service life solely applies to the characteristics specified in this EPD or the corresponding references.

The reference service life (RSL) does not reflect the actual life span, which is usually determined by the service life and the refurbishment of a building. It does not give any information on the useful life, warranty referring to performance characteristics or guarantees.

Possible end-of-life stages	The internal solar shading products are shipped to central collection points. There the products are usually shredded and sorted into their original con- stituents. The end-of-life stage depends on the site where the products are used and is therefore subject to the local regulations. Observe the locally applicable regulatory requirements.
	This EPD shows the end-of-life modules according to the market situation. Specific parts of steel and aluminium are recycled. Residual fractions are sent to landfill or partially thermally recycled.
Disposal routes	The LCA includes the average disposal routes.

All life cycle scenarios are detailed in the Annex.

6 Life Cycle Assessment (LCA)

Environmental product declarations are based on life cycle assessments (LCAs) which use material and energy flows for the calculation and subsequent representation of environmental impacts.

Life cycle assessments have been developed as the basis for internal solar shading systems. These LCAs are in conformity with DIN EN 15804 and the international standards DIN EN ISO 14040, DIN EN ISO 14044, ISO 21930 and EN ISO 14025.

The LCA is representative of the products presented in the Declaration and the specified reference period.

6.1 Definition of goal and scope

Goal

The goal of the LCA is to demonstrate the environmental impacts of internal solar shading systems. In accordance with DIN EN 15804, the environmental impacts covered by this Environmental Product Declaration are presented for the entire product life cycle in the form of basic information. No other additional environmental impacts are specified.

Data quality, data availability and geographical and time-related system boundaries The specific data originate exclusively from the 2019 fiscal year. They were collected on-site at the plants located in 70771 Leinfelden-Echterdingen, 97996 Niederstetten, 79359 Riegel am Kaiserstuhl, 06184 Kabelsketal, 06184 Kabelsketal, 73230 Kirchheim unter Teck and 35801 Kraslice, Czech Republic and originate in parts from company records and values directly obtained by measurement. Validity of the data was checked by the ift Rosenheim.

The generic data originate from the "GaBi 9" professional and construction materials databases. The last update of both databases was in 2020. Data from before this date originate also from these databases and are not more than 4 years old. No other generic data were used for the calculation.

Page 7

Product group: Solar shading devices

	Data gaps were either filled with comparable data or conservative assump- tions, or the data were cut off in compliance with the 1% rule.
	The life cycle was modelled using the sustainability software tool "GaBi ts" for the development of Life Cycle Assessments.
Scope / system boundaries	The system boundaries refer to the supply of raw materials and purchased parts, manufacture/production, use and end-of-life stage of internal solar shading products (cradle to gate – with options). No additional data from pre-suppliers/subcontractors or other sites were taken into consideration.
Cut-off criteria	All company data collected, i.e. all commodities/input and raw materials used, the thermal energy and electricity consumption, were taken into consideration.
	The boundaries cover only the product-relevant data. Building sec- tions/parts of facilities that are not relevant to the manufacture of the prod- ucts, were excluded.
	The transport distances of the pre-products were taken into consideration as a function of > 93% of the mass of the internal solar shading products. The remaining transport distances of the pre-products to the plant in 70771 Leinfelden-Echterdingen were not taken into consideration.
	The criteria for the exclusion of inputs and outputs as set out in DIN EN 15804 are fulfilled. From the data analysis, it can be assumed that the total of negligible processes per life cycle stage does not exceed 1% of the mass/primary energy. This way the total of negligible processes does not exceed 5% of the energy and mass input. The life cycle calculation also includes material and energy flows that account for less than 1%.
6.2 Inventory analysis	
Goal	All material and energy flows are described below. The processes covered are presented as input and output parameters and refer to the de- clared/functional units.
Life cycle stages	The entire life cycle of the internal solar shading products is shown in the Annex. Product stage "A1 – A3", construction process stage" A4 – A5", use stage "B2– B4, B6, B7", end-of-life stage "C1 – C4" and the benefits and loads beyond the system boundaries "D" were taken into consideration.
Benefits	 The below benefits have been defined as per DIN EN 15804: benefits from recycling benefits (thermal and electrical) from incineration
Allocation of co-products	The manufacture of internal solar shading products does not produce any allocations.

Page 8

Product group: Solar shading devices

Allocations for re-use, re- cycling and recovery	If the internal solar shading products are reus during the product stage (rejects), the element and then sorted into their original constituents. cess plants, e.g. magnetic separators.	s are shredded, if necessary								
	•	•								
Allocations beyond life cy- cle boundaries	current market-specific situation. In parallel to this, a recycling poten was taken into consideration that reflects the economic value of the pro- uct after recycling (recyclate).									
	 and then sorted into their original constituents. This is done by various cess plants, e.g. magnetic separators. The system boundaries of the internal solar shading products were se lowing their disposal, reaching their end-of-waste status. Cy- Use of recycled materials in the manufacturing process was based or current market-specific situation. In parallel to this, a recycling pote was taken into consideration that reflects the economic value of the puct after recycling (recyclate). The system boundary set for the recycled material refers to collection 									
Secondary material	e use of secondary materials by clauss markisen Projekt GmbH was con-									
Inputs	·									
	The extra light German "DE Heizöl el" fuel oil w material. For gas as input material, "Erdgas De gas) was used. For wood pellets, "Holzpellets land" (wood pellets Germany) were used. The	eutschland" (German natural (0% H2O content) Deutsch-								
	, , , , , , , , , , , , , , , , , , , ,									
	•									
	lowing their disposal, reaching their end-of-waste status.ie cy-Use of recycled materials in the manufacturing process was based of current market-specific situation. In parallel to this, a recycling point was taken into consideration that reflects the economic value of the uct after recycling (recyclate).The system boundary set for the recycled material refers to collection.The system boundary set for the recycled material refers to collection.The use of secondary materials by clauss markisen Projekt GmbH was sidered in Module A3. Secondary material is not used.The LCA includes the following production-relevant inputs:EnergyThe extra light German "DE Heizöl el" fuel oil was used as the fuel oil material. For gas as input material, "Erdgas Deutschland" (German r gas) was used. For wood pellets, "Holzpellets (0% H2O content) De land" (wood pellets Germany) were used. The electricity mix is bas the following electricity mix (see table below):Electricity disclosure of energy supplierShares in % Renewable energies*59.1 Coal/natural gas									
	current market-specific situation. In parallel to this, a recycling p was taken into consideration that reflects the economic value of th uct after recycling (recyclate). The system boundary set for the recycled material refers to collect al The use of secondary materials by clauss markisen Projekt GmbH v sidered in Module A3. Secondary material is not used. The LCA includes the following production-relevant inputs: Energy The extra light German "DE Heizöl el" fuel oil was used as the fuel material. For gas as input material, "Erdgas Deutschland" (Germar gas) was used. For wood pellets, "Holzpellets (0% H2O content) D land" (wood pellets Germany) were used. The electricity mix is b the following electricity mix (see table below): Electricity disclosure of energy supplier Shares in % Renewable energies* Kenewable energies* 59.1 Coal/natural gas 5.1 Hard/brown coal 0.7 Heavy oil 20.5									
	Trucical ellergy	14.0								

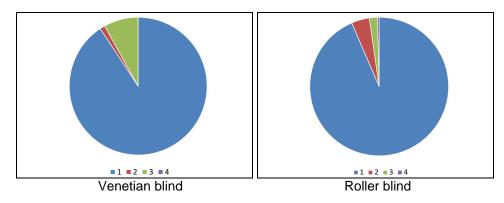
Exempt from this is the Niederstetten plant. 72% of its electricity demand is supplied by electricity from photovoltaics and only the remaining 28% by the purchased electricity mix.

A portion of the process heat is used for space heating. This can, however, not be quantified, hence a "worst case" figure was taken into account for the product.

Water

The water consumed by the individual process steps for the manufacture of internal solar shading products amounts to 11.48 I (venetian blinds) and 52.31 I (roller blinds) water per 1 m² of the element.

The consumption of fresh water specified in Section 6.3 results (among others) from the process chains of the pre-products.


Product group: Solar shading devices

Raw material / pre-products

The chart below shows the share of raw materials/pre-products in the end product in percent.

Page 9

No.	Material	Mass in %							
		Venetian blind	Roller blind						
1	Metals	90.8	93.6						
2	Fabric	1.2	4.2						
3	Plastics	8.1	1.9						
4	Other	0.0	0.4						

Ancillary materials and consumables

13.23 g (venetian blind) or 60.28 g (roller blind) of ancillary materials and consumables are required for 1 m^2 of Internal solar shading.

Product packaging

The amounts used for product packaging are as follows:

No.	Material	Mass in kg									
		Venetian blind	Roller blind								
1	PE films	0.01	0.01								
2	Labels	0.00	0.00								
3	Paper	0.00	0.02								
4	Adhesive tape	0.05	0.05								

Outputs

The LCA includes the following production-relevant outputs per 1 m² of Internal solar shading:

Waste

Secondary raw materials were included in the benefits. See Section 6.3 Impact assessment.

Waste water

The manufacture of internal solar shading products produces 11.48 I (venetian blind) or 52.31 I (roller blind) waste water per 1 m².

Page 10

Product group: Solar shading devices

6.3 Impact assessment	
Goal	The impact assessment covers both inputs and outputs. The impact cate- gories applied are named below:
Impact categories	 The models for impact assessment were applied as described in DIN EN 15804-A1. The impact categories presented in the EPD are as follows: depletion of abiotic resources (fossil fuels); depletion of abiotic resources (mineral substances); acidification of soil and water; ozone depletion; global warming; eutrophication; photochemical ozone creation.
Waste	The waste generated during the production of 1 m ² of Internal solar shad- ing is evaluated and shown separately for the fractions trade wastes, spe- cial wastes and radioactive wastes. Since waste handling is modelled within the system boundaries, the amounts shown refer to the deposited wastes. A portion of the waste indicated is generated during the manufac-

ture of the pre-products.

:0	Results per 1 m ² of venetian blind Item A1 A3 A4 A5 P1 P3 P4 P5 P5 C1 C3 C4 D															
	Unit	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
ROSENHEIM					Cent	ral enviro	nmental i	mpacts								
GWP	kg CO₂ eq.	10.95	0.09	0.16	-	7.54E-04	0.28	12.91	-	0.00	0.00	1.32E-02	9.55E-03	0.38	1.53E-03	-5.15
ODP	kg CFC -11 eq.	9.69E-09	1.44E-17	1.49E-17	-	8.09E-18	3.94E-15	1.94E-08	-	0.00	0.00	3.95E-16	1.58E-18	1.67E-15	8.42E-18	-1.04E-14
AP	kg SO ₂ eq.	4.89E-02	2.59E-04	9.92E-06	-	1.67E-06	2.51E-04	5.41E-02	-	0.00	0.00	2.77E-05	2.84E-05	1.35E-04	9.81E-06	-2.24E-02
EP	kg PO₄³- eq.	3.48E-03	6.34E-05	2.16E-06	-	6.02E-07	5.95E-05	4.63E-03	-	0.00	0.00	3.07E-06	6.94E-06	1.72E-05	1.10E-06	-1.26E-03
POCP	kg ethene eq.	2.97E-03	-7.00E-05	1.02E-06	-	1.33E-07	4.07E-05	3.36E-03	-	0.00	0.00	1.97E-06	-7.66E-06	1.03E-05	7.37E-07	-1.23E-03
ADPE	kg Sb eq.	-8.33E-05	7.29E-09	8.85E-10	-	8.37E-10	2.43E-07	-1.70E-04	-	0.00	0.00	4.41E-09	7.98E-10	2.01E-08	5.90E-10	-1.85E-06
ADPF	MJ	156.28	1.20	1.65E-02	-	1.10E-02	3.77	203.47	-	0.00	0.00	0.15	0.13	0.64	2.17E-02	-56.69
Use of resources																
PERE	MJ	160.30	6.74E-02	0.74	-	1.84E-03	0.70	265.67	-	0.00	0.00	0.10	7.37E-03	0.44	2.93E-03	-28.83
PERM	MJ	0.74	0.00	-0.74	-	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PERT	MJ	161.03	6.74E-02	3.67E-03	-	1.84E-03	0.70	265.67	-	0.00	0.00	0.10	7.37E-03	0.44	2.93E-03	-28.83
PENRE	MJ	179.60	1.20	5.72E-02	-	1.22E-02	4.03	232.54	-	0.00	0.00	0.24	0.13	1.87	6.67E-02	-66.89
PENRM	MJ	0.93	0.00	-3.78E-02	-	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	-0.84	-4.44E-02	0.00
PENRT	MJ	180.53	1.20	1.94E-02	-	1.22E-02	4.03	232.54	-	0.00	0.00	0.24	0.13	1.02	2.23E-02	-66.89
SM	kg	0.00	0.00	0.00	-	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00
RSF	MJ	0.00	0.00	0.00	-	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NRSF	MJ	0.00	0.00	0.00	-	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FW	m ³	0.16	7.80E-05	3.40E-04	-	5.00E-03	9.15E-04	0.18	-	0.00	0.00	1.21E-04	8.53E-06	1.21E-03	5.63E-06	-7.25E-02
						Waste of	categories	5								
HWD	kg	3.73E-07	5.58E-08	1.36E-11	-	1.57E-11	2.07E-09	7.99E-07	-	0.00	0.00	9.80E-11	6.11E-09	4.34E-10	3.41E-10	-3.62E-08
NHWD	kg	3.11	1.84E-04	6.70E-04	-	1.53E-03	5.30E-03	3.55	-	0.00	0.00	1.68E-04	2.01E-05	2.00E-03	0.11	-1.45
RWD	kg	9.57E-03	1.48E-06	1.13E-06	-	4.79E-07	1.03E-04	1.15E-02	-	0.00	0.00	3.59E-05	1.62E-07	1.52E-04	2.54E-07	-4.03E-03
						Output m	aterial flo	ws								
CRU	kg	0.00	0.00	0.00	-	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MFR	kg	0.29	0.00	0.00	-	0.00	0.00	2.55	-	0.00	0.00	0.00	0.00	0.99	0.00	0.00
MER	kg	0.00	0.00	0.00	-	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00
EEE	MJ	1.51	0.00	0.33	-	0.00	0.13	5.09	-	0.00	0.00	0.00	0.00	0.70	0.00	0.00
EET	MJ	3.12	0.00	0.59	-	0.00	0.22	9.91	-	0.00	0.00	0.00	0.00	1.25	0.00	0.00

Key:

GWP - global warming potentialODP - ozone depletion potentialAP - acidification potentialEP - eutrophication potentialPOCP - photochemical ozone formation potentialADPE -
abiotic depletion potential - non-fossil resourcesADPF - abiotic depletion potential - fossil resourcesPERE - Use of renewable primary energyPERM - use of renewable primary energyPERM - use of renewable primary energyPERM - use of renewable primary energy resourcesPENRT -
total use of non-renewable primary energy resourcesPENRE - use of non-renewable primary energy resourcesPENRT -
renewable primary energy

Results per 1 m² of venetian blind Item A1.A3 A4 A5 P1 P2 P3 P4 P5 P7 C1 C2 C3 C4 D																
	Unit	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
ROSENHEIM					Cent	ral enviro	nmental i	mpacts								
GWP	kg CO₂ eq.	58.83	0.46	0.19	-	7.54E-04	0.00	65.58	-	0.00	0.00	7.20E-02	5.21E-02	1.23	8.79E-03	-28.05
ODP	kg CFC -11 eq.	2.40E-08	7.62E-17	2.10E-17	-	8.09E-18	0.00	4.79E-08	-	0.00	0.00	2.15E-15	8.60E-18	1.75E-15	4.84E-17	-4.66E-14
AP	kg SO₂ eq.	0.26	1.37E-03	1.50E-05	-	1.67E-06	0.00	2.73E-01	-	0.00	0.00	1.51E-04	1.55E-04	1.88E-04	5.64E-05	-0.12
EP	kg PO ₄ ³⁻ eq.	1.79E-02	3.35E-04	3.15E-06	-	6.02E-07	0.00	2.28E-02	-	0.00	0.00	1.67E-05	3.78E-05	2.86E-05	6.35E-06	-6.94E-03
POCP	kg ethene eq.	1.54E-02	-3.70E-04	1.38E-06	-	1.33E-07	0.00	1.65E-02	-	0.00	0.00	1.08E-05	-4.18E-05	1.58E-05	4.24E-06	-6.80E-03
ADPE	kg Sb eq.	-4.58E-04	3.86E-08	1.37E-09	-	8.37E-10	0.00	-9.37E-04	-	0.00	0.00	2.40E-08	4.35E-09	2.48E-08	3.39E-09	-1.02E-05
ADPF	MJ	800.28	6.32	2.35E-02	-	1.10E-02	0.00	1,005.35	-	0.00	0.00	0.80	0.71	0.73	1.25E-01	-306.32
Use of resources																
PERE	MJ	785.66	0.36	1.04	-	1.84E-03	0.00	1259.40	-	0.00	0.00	0.57	4.02E-02	0.46	1.68E-02	-158.45
PERM	MJ	1.03	0.00	-1.03	-	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PERT	MJ	786.70	0.36	5.15E-03	-	1.84E-03	0.00	1259.40	-	0.00	0.00	0.57	4.02E-02	0.46	1.68E-02	-158.45
PENRE	MJ	922.81	6.34	6.53E-02	-	1.22E-02	0.00	1149.71	-	0.00	0.00	1.29	0.72	4.13	0.29	-360.78
PENRM	MJ	3.19	0.00	-3.78E-02	-	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	-3.00	-0.16	0.00
PENRT	MJ	926.00	6.34	2.75E-02	-	1.22E-02	0.00	1,149.71	-	0.00	0.00	1.29	0.72	1.13	0.13	-360.78
SM	kg	0.00	0.00	0.00	-	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00
RSF	MJ	0.00	0.00	0.00	-	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NRSF	MJ	0.00	0.00	0.00	-	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FW	m³	0.87	4.12E-04	4.25E-04	-	5.00E-03	0.00	0.94	-	0.00	0.00	6.61E-04	4.65E-05	3.04E-03	3.24E-05	-0.40
						Waste o	ategories	5								
HWD	kg	2.68E-06	2.95E-07	2.45E-11	-	1.57E-11	0.00	5.63E-06	-	0.00	0.00	5.34E-10	3.33E-08	5.04E-10	1.96E-09	-1.97E-07
NHWD	kg	16.83	9.70E-04	1.39E-03	-	1.53E-03	0.00	18.75	-	0.00	0.00	9.16E-04	1.09E-04	5.35E-03	0.65	-8.11
RWD	kg	4.97E-02	7.85E-06	1.56E-06	-	4.79E-07	0.00	5.71E-02	-	0.00	0.00	1.96E-04	8.85E-07	1.58E-04	1.46E-06	-2.15E-02
						Output ma	aterial flo	ws								
CRU	kg	0.00	0.00	0.00	-	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MFR	kg	1.51	0.00	0.00	-	0.00	0.00	14.11	-	0.00	0.00	0.00	0.00	5.54	0.00	0.00
MER	kg	0.00	0.00	0.00	-	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00
EEE	MJ	8.23	0.00	0.39	-	0.00	0.00	22.25	-	0.00	0.00	0.00	0.00	2.51	0.00	0.00
EET	MJ	17.00	0.00	0.69	-	0.00	0.00	44.29	-	0.00	0.00	0.00	0.00	4.46	0.00	0.00

Key:

GWP - global warming potentialODP - ozone depletion potentialAP - acidification potentialEP - eutrophication potentialPOCP - photochemical ozone formation potentialADPE -
abiotic depletion potential - non-fossil resourcesADPF - abiotic depletion potential - fossil resourcesPERE - Use of renewable primary energyPERM - use of renewable primary energyPERM - use of renewable primary energyPERM - use of renewable primary energy resourcesPENRT -
total use of non-renewable primary energy resourcesPENRE - use of non-renewable primary energy resourcesPENRT -
renewable primary energy

Note:

If the internal solar shading device is operated by an electric drive, the following environmental impacts must be added to the total doorset:

1 electric drive (1.93 kg incl. packaging 1.72 kg excl. packaging) (1)

ift					R	esults pe	r 1 drive	unit								
	Unit	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
ROSENHEIM					Cent	ral enviro	nmental i	mpacts								
GWP	kg CO₂ eq.	6.64	1.70E-02	0.30	-	0.00	0.00	23.57	-	124.10	0.00	0.00	0.10	0.09	2.35E-02	-0.11
ODP	kg CFC -11 eq.	4.54E-08	2.78E-18	7.22E-17	-	0.00	0.00	1.51E-07	-	3.71E-12	0.00	0.00	1.65E-17	2.82E-15	1.29E-16	-1.49E-15
AP	kg SO ₂ eq.	3.02E-02	2.40E-05	6.10E-05	-	0.00	0.00	0.10	-	0.26	0.00	0.00	1.43E-04	1.98E-04	1.50E-04	-1.33E-04
EP	kg PO₄³- eq.	2.01E-03	5.61E-06	1.17E-05	-	0.00	0.00	6.95E-03	-	2.88E-02	0.00	0.00	3.33E-05	2.19E-05	1.69E-05	-1.66E-05
POCP	kg ethene eq.	2.26E-03	-5.65E-06	4.05E-06	-	0.00	0.00	7.46E-03	-	1.85E-02	0.00	0.00	-3.35E-05	1.41E-05	1.13E-05	-1.21E-05
ADPE	kg Sb eq.	1.04E-03	1.40E-09	5.90E-09	-	0.00	0.00	3.46E-03	-	4.15E-05	0.00	0.00	8.34E-09	3.15E-08	9.04E-09	-1.97E-08
ADPF	MJ	92.23	0.23	8.23E-02	-	0.00	0.00	312.70	-	1,375.27	0.00	0.00	1.37	1.05	0.33	-1.48
Use of resources																
PERE	MJ	7.86	1.30E-02	3.41	-	0.00	0.00	39.17	-	986.06	0.00	0.00	7.70E-02	0.75	4.49E-02	-0.40
PERM	MJ	3.39	0.00	-3.39	-	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PERT	MJ	11.25	1.30E-02	1.72E-02	-	0.00	0.00	39.17	-	986.06	0.00	0.00	7.70E-02	0.75	4.49E-02	-0.40
PENRE	MJ	87.23	0.23	9.48E-02	-	0.00	0.00	331.12	-	2,225.12	0.00	0.00	1.37	1.69	10.54	-1.82
PENRM	MJ	10.20	0.00	0.00	-	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	-10,20	0.00
PENRT	MJ	97.43	0.23	9.48E-02	-	0.00	0.00	331.12	-	2,225.12	0.00	0.00	1.37	1.69	0.34	-1.82
SM	kg	0.00	0.00	0.00	-	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00
RSF	MJ	0.00	0.00	0.00	-	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NRSF	MJ	0.00	0.00	0.00	-	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FW	m ³	3.73E-02	1.50E-05	8.77E-04	-	0.00	0.00	0.13	-	1.14	0.00	0.00	8.91E-05	8.67E-04	8.64E-05	-4.60E-04
						Waste o	ategories									
HWD	kg	2.61E-07	1.07E-08	1.40E-10	-	0.00	0.00	1.14E-06	-	9.21E-07	0.00	0.00	6.38E-08	7.00E-10	5.22E-09	-7.27E-10
NHWD	kg	0.61	3.53E-05	9.41E-03	-	0.00	0.00	7.80	-	1.58	0.00	0.00	2.10E-04	1.20E-03	1.72	-8.42E-04
RWD	kg	2.06E-03	2.86E-07	4.98E-06	-	0.00	0.00	7.32E-03	-	0.34	0.00	0.00	1.70E-06	2.57E-04	3.90E-06	-1.36E-04
		_				Output m	aterial flo	ws								
CRU	kg	0.00	0.00	0.00	-	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MFR	kg	0.00	0.00	0.00	-	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MER	kg	0.00	0.00	0.00	-	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00
EEE	MJ	0.00	0.00	0.45	-	0.00	0.00	1.51	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00
EET	MJ	0.00	0.00	0.82	-	0.00	0.00	2.75	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Key:

GWP - global warming potentialODP - ozone depletion potentialAP - acidification potentialEP - eutrophication potentialPOCP - photochemical ozone formation potentialADPE -
abiotic depletion potential - fossil resourcesPERE - Use of renewable primary energyPERM - use of renewable primary energyPERM - use of renewable primary energy resourcesPENRT -
resourcesPENRT - total use of non-renewable primary energy resourcesPENRE - use of non-renewable primary energy resourcesPENRT -
renewable primary energy resourcesPENRT -
re

Product group: Solar shading devices

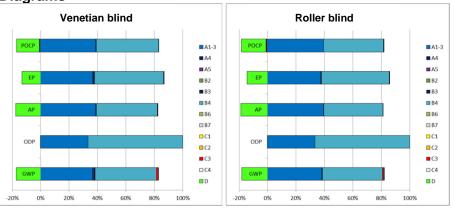
6.4 Interpretation, LCA presentation and critical review

Evaluation

The environmental impacts of

- venetian blinds
- roller blinds

differ considerably from each other. The differences are due mainly to the different pre-products and raw materials used, and their amounts. This was to be expected mainly for the metals used.


The environmental impacts from the manufacture of the two product systems result mainly from the use of aluminium and associated upstream chains. The environmental impacts resulting from energy consumption and the associated upstream chains are also of importance, but refer to the downstream application.

In addition, two replacements of the entire product systems play a major role in terms of environmental impacts during the 50-year use stage.

For scenario C4 only marginal consumptions arising from the physical pre-treatment and management of the disposal site are expected. Allocation to individual products is almost impossible for site disposal. As regards the recycling of the products, almost 30% of the environmental impacts of aluminium arising during manufacture can be assigned as benefits to scenario D.

The chart below shows the allocation of the main environmental impacts.

The values obtained from the LCA calculation are suitable for building certification if required.

Diagrams

Page 15

Product group: Solar shading devices

Report	The LCA underlying this EPD was developed according to the require- ments of DIN EN ISO 14040 and DIN EN ISO 14044 as well as DIN EN 15804 and DIN EN ISO 14025. It is not addressed to third parties for reasons of confidentiality. It is deposited with the ift Rosenheim. The results and conclusions reported to the target group are complete, correct, without bias and transparent. The results of the study are not designed to be used for comparative statements intended for publica- tion.
Critical review	The critical review of the LCA and the report took place in the course of verification of the EPD and was carried out by Susanne Volz M. Sc. Environmental Science, an external verifier.
7 General information re	garding the EPD
Comparability	This EPD was prepared in accordance with DIN EN 15804 and is there- fore only comparable to those EPDs that also comply with the require- ments set out in DIN EN 15804. Any comparison must refer to the building context and the same boundary conditions of the various life cycle stages. For comparing EPDs of construction products, the rules set out in DIN EN 15804 (Clause 5.3) apply.
	The detailed individual results of the products were summarised on the basis of conservative assumptions and differ from the average results. Identification of the product groups and the resulting variations are documented in the background report.
Communication	The communications format of this EPD meets the requirements of EN 15942:2012 and is therefore the basis for B2B communication. Only the nomenclature has been changed according to DIN EN 15804.
Verification	Verification of the Environmental Product Declaration is documented in accordance with the ift "Richtlinie zur Erstellung von Typ III Umwelt- produktdeklarationen" (Guidance on preparing Type III Environmental Product Declarations) in accordance with the requirements set out in DIN EN ISO 14025.
	The Declaration is based on the PCR – documents "PCR Part A" PCR- A-0.2:2018 and "Solar shading devices and shutters (inlcuding black- out systems)" PCR-SS-2.1:2018
	The European standard EN 15804 serves as the core PCR a) Independent verification of the Declaration and statement according to EN ISO 14025:2010 □ internal ⊠ external Independent third party verifier: b) Susanne Volz a) Product category rules b) Optional for business-to-business communication Mandatory for business-to-consumer communication (see EN ISO 14025:2010, 9.4)

EPD Internal solar shading

Declaration code: EPD-ISZ-GB-37.0

Publication date: 15.10.2020

Product group: Solar shading devices

Revisions of this document

No.	Date	Note:	Practi- tioner of the LCA	Verifier
1	15.10.2020	External Verification	Zwick	Volz

Page 16

Publication date: 15.10.2020

Product group: Solar shading devices

8 Bibliography

1. **Somfy Activités SA.** *Product Environmental Profile* "Sonesse 40 io/RTS Range". Cluses : PEP ecopassport®, Association P.E.P, 2018. SOMF-00035-V01.02-EN.

2. **Research project.** "EPDs für transparente Bauelemente" (EPDs for transparent building components) -Final report. Rosenheim : ift Rosenheim GmbH, 2011 SF-10.08.18.7-09.21/II 3-F20-09-1-067.

3. Klöpffer, W und Grahl, B. Ökobilanzen (LCA). Weinheim: Wiley-VCH-Verlag, 2009.

4. Eyerer, P. und Reinhardt, H.-W. Ökologische Bilanzierung von Baustoffen und Gebäuden - Wege zu einer ganzheitlichen Bilanzierung. (LCA of building materials and buildings - Routes to integrated LCA). Basel: Birkhäuser Verlag, 2000.

5. Gefahrstoffverordnung – GefStoffV (Hazardous substances regulation) Verordnung zum Schutz vor Gefahrstoffen (Regulation on protection against hazardous substances), Berlin: BGBI. (Federal Gazette) I S. 3758, 2017.

6. Chemikalien-Verbotsverordnung – ChemVerbotsV (Chemicals Prohibition Regulation) Verordnung über Verbote und Beschränkungen des Inverkehrbringens gefährlicher Stoffe, Zubereitungen und Erzeugnisse Chemikaliengesetz (Regulation on bans and restrictions of the placing on the market of hazardous substances, formulations and products covered by the Chemicals Law), Berlin: BGBI. (Federal Gazette) I S. 1328, 2017.

7. **DIN EN ISO 14040:2018-05.** *Environmental management - Life cycle assessment - Principles and framework.* Berlin: Beuth Verlag GmbH, 2018.

8. **DIN EN ISO 14044:2006-10.** *Environmental management - Life cycle assessment - Requirements and guidelines..* Berlin: Beuth Verlag GmbH, 2006.

9. EN ISO 14025:2011-10. Umweltkennzeichnungen und -deklarationen Typ III Umweltdeklarationen - Grundsätze und Verfahren.(Environmental labels and declarations - Type III environmental declarations - Principles and procedures) Berlin: Beuth Verlag GmbH, 2011.

10. **OENORM Š 5200:2009-04-01** Radioactivity in construction materials. Berlin: Beuth Verlag GmbH, 2009.

11. PCR Part B - Internal and external solar shading devices (including blackout systems). *Product category rules for environmental product declarations as per EN ISO 14025 and EN 15804* Rosenheim: ift Rosenheim, 2018

12. **EN 15942:2012-01.** Sustainability of construction works -Environmental product declarations - Communication format business-to-business. Berlin: Beuth Verlag GmbH, 2012.

13. EN 15804:2012+A1:2013. Sustainability of construction works - Environmental product declarations - Rules for the product categories. Berlin: Beuth Verlag GmbH, 2013.

14. RAL-Gütegemeinschaft Fenster und Haustüren e.V.; ift Institut für Fenstertechnik (Quality Assurance Association Windows and Doors)-. Leitfaden zur Planung und Ausführung der Montage von Fenstern und Haustüren (Guide on planning and implementing the installation of windows and external pedestrian doorsets). Frankfurt: RAL-Gütegemeinschaft Fenster und Haustüren e.V. (Quality Assurance Association Windows and Doors), 2014

15. Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (Federal Ministry for the Environment, Nature Conservation and Nuclear Safety) **Berlin,** *Leitfaden Nachhaltiges Bauen (Guidance on Sustainable Building)* Berlin: s.n., 2016.

16. **DIN EN 13501-1:2010-01.** *Fire classification of construction products and building elements - Part 1: Classification using data from reaction to fire tests of construction products.* Berlin: Beuth Verlag GmbH, 2010.

17. **DIN EN ISO 16000 Part 6, 9 11** Indoor air: Determination of the emission of volatile organic compounds from building products and furnishing Berlin: Beuth Verlag GmbH, 2012, 2008, 2006.

18. **ISO 21930:2017-07.** Sustainability in building construction - Environmental declaration of building products Berlin: Beuth Verlag, 2017.

19. Bundesimmissionsschutzgesetz – BImSchG (Federal Immission Law) Gesetz zum Schutz vor schädlichen Umwelteinwirkungen durch Luftverunreinigungen, Geräusche, Erschütterungen und ähnlichen Vorgängen (Law on harmful environmental impacts by air contamination, noise, vibrations and similar processes. Berlin: BGBI. (Federal Gazette) I S. 3830, 2017.

20. Chemikaliengesetz – ChemG (Chemicals Act Chemikaliengesetz ChemG (Chemicals Act) gefährlichen Stoffen Gesetz Schutz zum vor Unterteilt sich in Chemikaliengesetz und eine Reihe von Verordnungen; hier relevant (Law on protection against hazardous substances - Subdivided into Chemicals Law and a series of regulations; of relevance here): Gesetz zum Schutz vor gefährlichen Stoffen (Law on protection against hazardous substances) Berlin: BGBI. (Federal Gazette) I S. 1146, 2017.

21. **IKP Universität Stuttgart and PE Europe GmbH** *GaBi 8:* Software and database for LCA. Leinfelden-Echterdingen: s.n, 2017

22. **DIN EN 14351-2:2019-01.** Windows and doors - Product standard, performance characteristics - Part 2: Internal pedestrian doorsets without resistance to fire/or smoke leakage characteristics. Berlin: Beuth Verlag GmbH, 2019.

23. **DIN EN 14351-1:2016-12.** *Windows and doors - Product standard, performance characteristics - Part 1: Windows and external pedestrian doors without resistance to fire and/or smoke leakage characteristics.* Berlin: Beuth Verlag GmbH, 2016.

24. **DIN EN ISO 12457 Part 1-4** *Characterization of waste -Leaching; Compliance test for leaching of granular waste materials and sludges - Part 1-4:* Berlin: Beuth Verlag GmbH, 2003.

25. **ift-Guideline NA-01/3.** Allgemeiner Leitfaden zur Erstellung von Typ III Umweltproduktdeklarationen (Guidance on preparing Type III Environmental Product Declarations) Rosenheim : ift Rosenheim GmbH, 2015

26. **PCR Part A.** *Product category rules for environmental product declarations as per EN ISO 14025 and EN 15804.* Rosenheim: ift Rosenheim, 2018

Page 17

Page 18

Product group: Solar shading devices

9 Annex

Description of life cycle scenarios for internal solar shading devices

Prod	duct st	age	Co struc sta	ction			U	se stag	ge			E	nd-of-li	ife stag	е	Benefits and loads from beyond the system boundaries
A1	A2	A3	A4	A5	B1	B2	В3	В4	В5	B6	B7	C1	C2	C3	C4	D
Raw material supply	Transport	Manufacture	Transport	Construction/Installation	Use	Inspection, maintenance, clean- ing	Repair	Exchange / Replacement	Improvement / Modernisation	Operational energy use	Operational water use	Deconstruction	Transport	Waste management	Disposal	Re-use Recovery Recycling potential
~	✓	~	 ✓	✓	—	✓	~	✓	—	✓	~	 ✓	✓	~	✓	✓

Calculation of the scenarios was based on a building service life of 50 years (in accordance with RSL of Section 4 Use stage).

The scenarios were based on information provided by the manufacturer. The scenarios were furthermore based on the research project "EPDs for transparent building components (2).

<u>Note:</u> The standard scenarios selected are presented in bold type. They were also used for calculating the indicators in the summary table.

- ✓ Included in the LCA
- Not included in the LCA

Product group: Solar shading devices

Δ4 Tran	A4 Transport to the construction site						
No.	Scenario	Description					
A4	Direct shipment to construction site/branch	3.5 t utility vehicle / Sprinter (Euro 4), 1.5 t pay- load, 85 percent capacity used, approx. 250 km					
Since or		re shown in the relevant summary table.					
A5 Con	5 Construction/Installation						
No.	Scenario	Description					
А5	According to the manufacturer, the elements arManuallyinstalled without additional lifting and auxiliary devices						
	of deviating consumption during insta agement, they are covered at the bui	Illation/assembly of the products which forms part of the ilding level.					
•	v materials, consumables, use of en t distances during installation are neg	ergy and water, material losses and waste as well as gligible.					
handling recycling Benefits	g. Waste is only thermally recycled in g plants is not taken into account. from A5 are specified in Module D. E	the Module construction / installation is sent to waste in line with the conservative approach. Transport to the Benefits from waste incineration: electricity replaces (EU bermal energy from (EU 28) natural gas.					
Since or	nly one scenario is used, the results a	re shown in the relevant summary table.					
	(not included) Section 5 Use stage - Emissions to t	he environment. Emissions cannot be quantified.					
B2 Insp	ection, maintenance, cleaning						
B2.1 Cle	eaning						
No.	Scenario	Description					
B2.1	Frequently, manually	Manually using moist cloth, twice a year 0.05 l/m² water per cleaning process (5 l / 50 yr)					
	 materials, consumables, use of en t distances during cleaning are neglig 	ergy and water, material losses and waste as well as jible.					
Since or	nly one scenario is used, the results a	re shown in the relevant summary table.					
	intenance ng to the manufacturer, no mandatory	maintenance of the elements is anticipated.					
•	v materials, consumables, use of ene luring maintenance are negligible.	rgy and water, waste, material losses and transport dis-					
_							

Since only one scenario is used, the results are shown in the relevant summary table.

Product group: Solar shading devices

B3 Rep	pair			
No.	Scenario	Description		
B3	Normal use and heavy use	Venetian blind Repeated replacement*: pull cord / chain (2.5 times)		
БЭ	Normal use and neavy use	Roller blind According to the manufacturer, no mandatory re- pair is anticipated.		
* Assumptions for the evaluation of possible environmental impacts; statements made do not constitute any guaranty or warranty of performance.				

For updated information refer to the relevant instructions for assembly/installation, operation and maintenance of Internal solar shading at www.mhz.de .

The internal solar shading products manufactured by clauss markisen Projekt GmbH have a specified service life of 20 years. Scenario B3 presents the LCA of the components of building elements with a service life of less than the relevant evaluation period.

Ancillary materials, consumables, use of energy and water, waste, material losses and transport distances during repair are negligible.

Since only one scenario is used, the results are shown in the summary table.

B4 Excl	B4 Exchange / Replacement				
No.	Scenario	Description			
В4	Normal use and heavy use	Two replacements of the entire system over a 50- year time period*			
* 4	Assumptions for evaluation of possible er	vironmental impacts: statements made do not constitute any			

* Assumptions for evaluation of possible environmental impacts; statements made do not constitute any guaranty or warranty of performance.

The statements made in this EPD are only informative to allow evaluation at the building level.

According to the manufacturer, it is assumed that two replacements will be necessary during the 20year reference service life and the 50-year building service life.

For updated information refer to the relevant instructions for assembly/installation, operation and maintenance of Internal solar shading at www.mhz.de .

The environmental impacts of the selected scenario originate from the product, construction and disposal phases.

Ancillary materials, consumables, use of energy and water, waste, material losses and transport distances are taken into account.

Since only one scenario is used, the results are shown in the summary table.

ift ROSENHEIM

Product group: Solar shading devices

B6 Operational energy use

There is no energy used during normal operation.

There is no transport consumption for the use of energy in buildings. Ancillary materials, consumables and water, waste materials and other scenarios are negligible.

Since only one scenario is used, the results are shown in the relevant summary table.

B7 Operational water use (not relevant)

No water consumption when used as intended. Water consumption for cleaning is specified in Module B2.1.

There is no transport consumption for the use of water in buildings. Ancillary materials, consumables, waste materials and other scenarios are negligible.

Since only one scenario is used, the results are shown in the relevant summary table.

C1 Deconstruction

No.	Scenario	Description
		95% deconstruction;
C1	Deconstruction	Further deconstruction rates are possible, give adequate reasons.

Since only one scenario is used, the results are shown in the summary table.

In case of deviating consumption the removal of the products forms part of the site management and is covered at the building level.

No.	Scenario	Description			
C2	TransportTransport to collection point using 3.5 t utility ve- hicle/ Sprinter (Euro 4), 1.5 t payload, 80% capac- ity used, 50 km				
Since only one scenario is used, the results are shown in the summary table.					
C3 Was	te management				
No.	Scenario	Description			
		 Share for recirculation of materials: steel 98% in melt (UBA, 2017) aluminium 95% in melt (GDA, 2018) 			

Page 22

Product group: Solar shading devices

The below table presents the disposal processes and their percentage by mass/weight. The calculation is based on the above mentioned shares in percent related to the declared unit of the product system.

C3 Disposal	Unit	Venetian blind	Roller blind
Collection process, collected separately	kg	1.14	6.24
Collection process, collected as mixed construction waste	kg	0.06	0.33
Recovery system, for re-use	kg	0.00	0.00
Recovery system, for recycling	kg	0.99	5.54
Recovery system, for energy recovery	kg	0.12	0.38
Disposal	kg	0.11	0.65

Since only one scenario is used, the results are shown in the summary table.

C4 Disp	C4 Disposal					
No.	Scenario	Description				
C4	Disposal	The non-recordable amounts and losses within the re-use/recycling chain (C1 and C3) are mod-elled as "disposed".				
ment of	elled as "disposed". The consumption in scenario C4 results from physical pre-treatment, waste recycling and management of the disposal site. The benefits obtained here from the substitution of primary material production are allocated to Module D, e.g. electricity and heat from waste incineration.					

Since only one scenario is used, the results are shown in the summary table.

D Benefits and loads from beyor	nd the system boundaries
---------------------------------	--------------------------

No.	Scenario	Description
D	Recycling potential	Aluminium recyclate from C3 excluding the recyclate used in A3 replaces 60% of aluminium compound; Steel scrap from C3 excluding the scrap used in A3 replaces 60% of steel; Benefits from waste incineration: electricity replaces (EU-28) European electricity mix; thermal energy replaces thermal energy from (EU-28) European natural gas

The values in Module D result from recycling of the packaging material in Module A5 and from deconstruction at the end of service life.

Since only one scenario is used, the results are shown in the summary table.

Imprint

Practitioner of the LCA

ift Rosenheim GmbH Theodor-Gietl-Straße 7-9 D-83026 Rosenheim

Programme operator

ift Rosenheim GmbH Theodor-Gietl-Str. 7-9 D-83026 Rosenheim Phone: 0 80 31/261-0 Fax: 0 80 31/261 290 Email: info@ift-rosenheim.de www.ift-rosenheim.de

Declaration holder

clauss markisen Projekt GmbH Sindelfinger Straße 21 70771 Leinfelden-Echterdingen

Notes

This EPD is mainly based on the work and findings of the Institut für Fenstertechnik e.V., Rosenheim (ift Rosenheim) and specifically on the ift-Richtlinie NA-01/3 Allgemeiner Leitfaden zur Erstellung von Typ III Umweltproduktdeklarationen. (Guideline NA.01/3 - Guidance on preparing Type III Environmental Product Declarations) The publication and all its parts are protected by copyright. Any utilisation outside the confined limits of the copyright provisions is not permitted without the consent of the publishers and is punishable. In particular, this applies to any form of reproduction, translations, storage on microfilm and the storage and processing in electronic systems.

Layout

ift Rosenheim GmbH - 2018

Photographs (front page) clauss markisen Projekt GmbH

© ift Rosenheim, 2020

ift Rosenheim GmbH Theodor-Gietl-Str. 7-9 D-83026 Rosenheim Phone: +49 (0) 80 31/261-0 Fax: +49 (0) 80 31/261-290 Email: info@ift-rosenheim.de www.ift-rosenheim.de